BlueDBM: A Multi-access, **Distributed Flash Store for Big Data Analytics**

Arvind

Computer Science and Artificial Intelligence Laboratory MIT

VLSI 2016, Kolkata, India

January 5, 2016

This talk is based heavily on our [ISCA, 2015] paper

Sang-Woo Jun, Ming Liu, Sungjin Lee, Shuotao Xu, Arvind

MIT

and

Jamey Hicks, John Ankcorn, Myron King Quanta Research

Big data analytics

- Analysis of previously unimaginable amount of data can provide deep insight
 - Google has predicted flu outbreaks a week earlier than the Center for Disease Control (CDC)
 - Analyzing personal genome can determine predisposition to diseases
 - Social network chatter analysis can identify political revolutions before newspapers
 - Scientific datasets can be mined to extract accurate models

Likely to be the biggest economic driver for the IT industry for the next decade

A currently popular solution: RAM Cloud

- Cluster of machines with large DRAM capacity and fast interconnect
 - + Fastest as long as data fits in DRAM
 - Power hungry and expensive
 - Performance drops when data doesn't fit in DRAM

What if enough DRAM isn't affordable?

Flash-based solutions may be a better alternative

- + Faster than Disk, cheaper than DRAM
- + Lower power consumption than both
- Legacy storage access interface is burdening
- Slower than DRAM

Latency profile of distributed flash-based analytics

- Distributed processing involves many system components
 - Flash device access
 - Storage software (OS, FTL, ...)
 - Network interface (10gE, Infiniband, ...)
 - Actual processing

Latency profile of distributed flash-based analytics

- Architectural modifications can remove unnecessary overhead
 - Near-storage processing
 - Cross-layer optimization of flash management software*
 - Dedicated storage area network
 - Accelerator

Custom flash card had to be built

7

BlueDBM: Platform with near-storage processing and inter-controller networks

BlueDBM: Platform with near-storage processing and inter-controller networks

- 20 24-core Xeon Servers
- 20 BlueDBM Storage devices
 - 1TB flash storage
 - x4 20Gbps controller network

9

- Xilinx VC707
- 2GB/s PCIe

BlueDBM node architecture

- Lightweight flash management with low overhead
- Custom network protocol with low latency/high bandwidth
- Software has low-level access to flash storage
 - High-level information can be used for low-level management
 - FTL implemented inside file system

Power consumption is low

Component	Power (Watts)
VC707	30
Flash Board (x2)	10
Storage Device Total	40
is a very conservative estimate	
Component	Power (Watts)
Storage Device	40
Xeon Server	200+
Node Total	240+
Xeon Server Node Total	200+ 240+ Ill double the powe

Applications

- High-dimensional nearest neighbor search
 - Faster flash with accelerators as replacement for DRAM-based systems
- BlueCache An accelerated memcached
 - Dedicated network and accelerated caching systems with larger capacity
- Graph analytics
 - Benefits of lower latency access into distributed flash for computation on large graphs

High-dimensional nearest neighbor search

- Takes a query point in a high dimensional space and returns nearest points in a dataset of tens of millions of data points
 - We used images as an example of high-dimensional data
- Used a distance metric of difference between histograms of each image
 - Histogram is generated using RGB, HSV, "edgeness", etc
 - Better algorithms are available!

Image search accelerator Sang woo Jun, Chanwoo Chung

Approximate algorithms to improve performance

- Approximate search algorithms incorporate intelligent sampling methods and improve performance by dramatically reducing the search
 - space
 - e.g., Locality Sensitive Hashing
 - But introduces random access pattern

Disk-based system can't take advantage of sampling 25 20 second per 15 1000 Images p 5 01 0 Faster Flash Faster Flash + Disk Flash Accelerator 17

memcached service

- A distributed in-memory key-value store
 - caches DB results indexed by query strings
 - Accessed via socket communication
 - Uses system DRAM for caching (~256GB)
- Extensively used by database-driven websites
 - Facebook, Flicker, Twitter, Wikipedia, Youtube ...

Networking contributes 90% of the overhead

Bluecache: Accelerated memcached service Shuotao Xu

High cache-hit rate outweighs slow flashaccesses (small DRAM vs. large Flash)

Graph traversal performance

Other potential applications

- Deep machine learning Convolutional Neural Networks
- Genomics
- Complex graph analytics
- Platform acceleration
 - Spark, MATLAB, SciDB, ...

Infrastructure software to help application development

- RISA distributed flash aware file system
- Connectal: Software to automate the generation of SW-to-HW and HW-to-SW codes for an interface definition
- Communications library
- map-reduce applications support

RISA: a new flash-optimized file system Sungjin Lee

Comparison of three different file systems [FAST 2016]

- EXT4: Well-known Linux EXT4 file system
- F2FS: Samsung's F2FS file system
- RISA: Our software solution optimized for BlueDBM

Conclusion

- Fast flash-based distributed storage systems with low-latency random access may be a good platform to support complex queries on Big Data
- Reducing access latency for distributed storage requires architectural modifications, including in-storage processors and fast storage networks
- Flash-based analytics hold a lot of promise, and we plan to continue demonstrating more application acceleration

Related work

Use of flash

- SSDs, FusionIO, Purestorage
- Zetascale
- SSD for database buffer pool and metadata [SIGMOD 2008], [IJCA 2013]
- Networks
 - QuickSAN [ISCA 2013]
 - Hadoop/Spark on Infiniband RDMA [SC 2012]
- Accelerators
 - SmartSSD[SIGMOD 2013], Ibex[VLDB 2014]
 - Catapult[ISCA 2014]
 - GPUs

BlueDBM software view

Performance: RISA vs EXT4 TPC-C workloads

Hardware improvements

- FPGA is being used for three distinct purposes
 - Flash controller
 - Routers in a configurable network
 - Accelerators

These functionalities can be supported by different chips. For example, a general purpose processor may simplify accelerator programming

Document search accelerator Sang woo Jun, Chanwoo Chung

- Useful for web search, plagiarism detection and document clustering
- Distance determined by the amount of words two documents share
 - Documents are pre-processed into tuples of words and occurrence count
 - Example of a much simpler distance metric

Document search performance

Even with a very computationally light distance metric, BlueDBM performs comparable to a DRAM-based system

Bluecache: Accelerated memcached service Shuotao Xu

- Hashing and flash management implemented in FPGA
 - 1TB hardware managed flash cache per node
- Hardware server accessed via local PCIe
- Direct network between hardware

Effect of hardware support for networking (no flash, only DRAM)

